- Home
- Search Results
- Page 1 of 1
Search for: All records
-
Total Resources2
- Resource Type
-
0000000002000000
- More
- Availability
-
20
- Author / Contributor
- Filter by Author / Creator
-
-
Cremonesi, Matteo (2)
-
Aarrestad, Thea Klaeboe (1)
-
Aarup Petersen, Henriette (1)
-
Abbaneo, Duccio (1)
-
Abbiendi, Giovanni (1)
-
Abbrescia, Marcello (1)
-
Abdalla, Hassan (1)
-
Abdullin, Salavat (1)
-
Abercrombie, Daniel (1)
-
Abreu, Andrés (1)
-
Acharya, Himal (1)
-
Acosta, Darin (1)
-
Adam, Wolfgang (1)
-
Adams, Eric (1)
-
Adams, Mark Raymond (1)
-
Adams, Todd (1)
-
Addesa, Francesca Maria (1)
-
Adloff, Catherine (1)
-
Adzic, Petar (1)
-
Afanasiev, Serguei (1)
-
- Filter by Editor
-
-
& Spizer, S. M. (0)
-
& . Spizer, S. (0)
-
& Ahn, J. (0)
-
& Bateiha, S. (0)
-
& Bosch, N. (0)
-
& Brennan K. (0)
-
& Brennan, K. (0)
-
& Chen, B. (0)
-
& Chen, Bodong (0)
-
& Drown, S. (0)
-
& Ferretti, F. (0)
-
& Higgins, A. (0)
-
& J. Peters (0)
-
& Kali, Y. (0)
-
& Ruiz-Arias, P.M. (0)
-
& S. Spitzer (0)
-
& Sahin. I. (0)
-
& Spitzer, S. (0)
-
& Spitzer, S.M. (0)
-
(submitted - in Review for IEEE ICASSP-2024) (0)
-
-
Have feedback or suggestions for a way to improve these results?
!
Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Particle collisions at the energy frontier can probe the nature of invisible dark matter via production in association with recoiling visible objects. We propose a new potential production mode, in which dark matter is produced by the decay of a heavy dark Higgs boson radiated from a heavyW′ boson. In such a model, motivated by left-right symmetric theories, dark matter would not be pair produced in association with other recoiling objects due to its lack of direct coupling to quarks or gluons. We study the hadronic decay mode viaW′ →tband estimate the LHC exclusion sensitivity at 95% confidence level to be 102− 105fb forW′ boson masses between 250 and 1750 GeV.more » « less
-
Tumasyan, Armen; Adam, Wolfgang; Andrejkovic, Janik Walter; Bergauer, Thomas; Chatterjee, Suman; Dragicevic, Marko; Escalante Del Valle, Alberto; Fruehwirth, Rudolf; Jeitler, Manfred; Krammer, Natascha; et al (, Journal of Instrumentation)Abstract Many measurements at the LHC require efficient identification of heavy-flavour jets, i.e. jets originating from bottom (b) or charm (c) quarks. An overview of the algorithms used to identify c jets is described and a novel method to calibrate them is presented. This new method adjusts the entire distributions of the outputs obtained when the algorithms are applied to jets of different flavours. It is based on an iterative approach exploiting three distinct control regions that are enriched with either b jets, c jets, or light-flavour and gluon jets. Results are presented in the form of correction factors evaluated using proton-proton collision data with an integrated luminosity of 41.5 fb -1 at √s = 13 TeV, collected by the CMS experiment in 2017. The closure of the method is tested by applying the measured correction factors on simulated data sets and checking the agreement between the adjusted simulation and collision data. Furthermore, a validation is performed by testing the method on pseudodata, which emulate various mismodelling conditions. The calibrated results enable the use of the full distributions of heavy-flavour identification algorithm outputs, e.g. as inputs to machine-learning models. Thus, they are expected to increase the sensitivity of future physics analyses.more » « less
An official website of the United States government
